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Abstract

A numerical study of mixed convection heat and mass transfer along a vertical wavy surface has been carried out

numerically. The wavy surface is maintained at uniform wall temperature and constant wall concentration that is higher

than that of the ambient. A simple coordinate transformation is employed to transform the complex wavy surface to a

flat plate. A marching finite-difference scheme is used for present analysis. The buoyancy ratio N , amplitude–wave-

length ratio a, and Richardson number (Gr=Re2) are important parameters for this problem. The numerical results,

including the developments of skin-friction coefficient, velocity, temperature, concentration, Nusselt number as well as

Sherwood number along the wavy surface are presented. The effects of the buoyancy ratio N and the dimensionless

amplitude of wavy surface on the local Nusselt number and the local Sherwood number have been examined in detail.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

Many transport processes exist in nature and industrial

applications in which the transfer of heat and mass occurs

simultaneously as a result of combined buoyancy effects of

thermal diffusion and diffusion of species. The engineering

applications include the chemical distillatory processes,

formation and dispersion of fog, design of heat exchang-

ers, channel type solar energy collectors, and thermo-

protection systems. Convection flows driven by tempera-

ture and concentration differences have been studied

extensively in the past and various extensions of the prob-

lems have been reported in the literature. With both con-

centration and temperature interacting simultaneously,

the convection flow can become quite complex, especially

with the combination of free and force convection.

Previous studies of the flows of heat and mass con-

vection have focused mainly on a flat plate or a regular

surface. In the studies for natural convection heat and
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mass transfer, Bottemanne [1] had considered simulta-

neous heat and mass transfer by free convection along a

vertical flat plate only for steady state theoretical solu-

tions with Pr ¼ 0:71 and Sc ¼ 0:63. Callahan and Mar-

ner [2] studied the free convection with mass transfer on

a vertical flat plate with Pr ¼ 1 and a realistic range of

Schmidt number. Chang et al. [3] investigated the com-

bined buoyancy effects of thermal and mass diffusion on

the natural convection flows in a vertical open tube. Yan

and Lin [4] studied combined heat and mass transfer

natural convection between vertical parallel plates with

film evaporation. In those for mixed convection heat

and mass transfer, Yan et al. [5] investigated simulta-

neous heat and mass transfer in laminar mixed convec-

tion flows between vertical parallel plates numerically.

Lai [6] solved for coupled heat and mass transfer by

mixed convection from a vertical plate in a saturated

porous medium. Yan [7] studied turbulent mixed con-

vection heat and mass transfer in a wetted channel.

Kumari and Nath [8] carried out the unsteady calcula-

tion of double diffusive mixed convection flow over a

vertical plate embedded in a porous medium.

The effects of mass diffusion on natural convection

flows along a flat plate with different inclination have
ed.
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Nomenclature

a amplitude of the wavy surface

c concentration

C dimensionless concentration

Cf skin-friction coefficient

Cp specific heat of fluid at constant pressure

(kJ kg�1 K�1)

D mass diffusivity (m2 s�1)

g gravitational acceleration (ms�2)

Gr Grashof number

k conductivity (Wm�1 K�1)

L wavelength of the wavy surface

N buoyancy ratio, Eq. (6)

Nu Nusselt number

P pressure (Nm�2)

Pr Prandtl number

Re Reynolds number

Ri Richardson number

Sc Schmidt number

Sh Sherwood number

T temperature (K)

U , V dimensionless velocity

u, v velocity components in the x and y direc-

tions, respectively (m s�1)

X , Y dimensionless coordinate system

x, y coordinate system (m)

Greek symbols

a amplitude–wavelength ratio, a=L
bT thermal expansion coefficient

bc concentration expansion coefficient

l viscosity (kgm�1 s�1)

q fluid density (kgm�3)

h dimensionless temperature

r surface geometry function

Superscript

* non-dimensional quantity

Subscripts

1 conditions far away from the surface

c caused by concentration

m mean value

T caused by temperature

w surface condition

x local value
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been studied rather extensively. Gebhart and Pera [9],

Chen and Yuh [10] and Srinivasan and Angirasa [11]

investigated the effects of inclination of flat plate on the

combined heat and mass transfer in natural convection.

Jang and Chang [12] studied the problem of buoyancy-

induced inclined boundary flows in a porous medium

resulting from combined heat and mass buoyancy ef-

fects. Maughan and Incropera [13] investigated experi-

mentally on mixed convection for air in a horizontal and

inclined channel. Few studies have considered the effects

of complex geometries on heat convection in micropolar

fluids, including the flows along a convex surface. Wang

and Kleinstreuer [14] investigated the thermal convec-

tion on micropolar fluids passing a convex with suction/

injection. Yih [15] studied the heat and mass transfer

characteristic in natural convection flow over a trun-

cated cone subjected to uniform wall temperature and

concentration or uniform heat and mass flux embedded

in porous media. Wu et al. [16] developed a numerical

model to study the effectiveness of dehydration media

for wedge-shaped surface with mass and heat transfer.

It is necessary to study the heat and mass transfer

from an irregular surface because irregular surfaces are

often present in many applications. It is often encoun-

tered in heat transfer devices to enhance heat transfer.

Mixed convection from irregular surfaces can be used

for transferring heat in several heat transfer devices, for
examples, flat-plate solar collectors and flat-plate con-

densers in refrigerators. The natural convection heat

transfer from an isothermal vertical wavy surface was

first studied by Yao [17,18] and using an extended Pra-

ntdl’s transposition theorem and a finite-difference

scheme. He proposed a simple transformation to study

the natural convection heat transfer from isothermal

vertical wavy surfaces, such as sinusoidal surface.

Moulic and Yao [19] solved for mixed convection with

thermal diffusion along a vertical wavy surface. Chiu

and Chou [20] studied the natural convection heat

transfer along a vertical wavy surface in micropolar

fluids. Chen and Wang [21] analyzed transient free

convection along a wavy surface in microfluids. Rathish

Kumar et al. [22–24] presented a series of studies about

the effects of phase of the wave surface on the natural

convection in porous media. They found that the effects

of the phase of the wavy surface on the flow and tem-

perature fields are important. Cheng [25,26] has inves-

tigated coupled heat and mass transfer by natural

convection flow along a vertical wavy surface and wavy

conical surface in a porous medium. Later Wang and

Chen [27] have studied transient mixed convection along

a wavy surface.

Most of the previous studies about vertical wavy

surfaces are concerned with microfluids or porous

media. Recently, Jang et al. [28] has studied numerically
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on natural convection heat and mass transfer along a

vertical wavy surface. Yet the preceding literature survey

shows that mixed convection heat and mass transfer in

Newtonian fluid along a vertical wavy surface has not

been well investigated. The objective of this study is to

examine numerically the mixed convection heat and

mass transfer along a vertical wavy surface by using

Prandtl’s transposition theorem and to investigate the

effect of irregular surfaces on the characteristics of mixed

convection heat and mass transfer. The numerical re-

sults, including the developments of friction factor, ve-

locity, temperature, concentration, local Nusselt number

as well as local Sherwood number along the wavy sur-

face, are presented. The influence of Richardson num-

ber, Gr=Re2, the buoyancy ratio N and the wavy

amplitude–wavelength ratio on the local Nusselt number

and Sherwood number including local skin-friction co-

efficient are also considered in this study.
2. Analysis

Consider a semi-infinite vertical wavy plate as shown

schematically in Fig. 1. The wavy surface of the plate

can be described by

y ¼ rðxÞ ¼ a � sin2ðpx=LÞ ð1Þ

where a is the amplitude of the wavy surface and L is the

characteristic length of the wavy surface. The origin of

the coordinate system is placed at the leading edge of the

vertical surface. The surface is kept at uniform temper-

ature Tw and uniform concentration cw and is aligned

parallel to a freestream velocity U1. The u and v are the
velocity components in the x and y directions, respec-

tively. The fluid oncoming to the surface has a constant
Fig. 1. Schematic diagram of the physical system.
temperature T1 and concentration c1. The flow is as-

sumed to be steady and the thermal properties of the

mixture are assumed to be constant except for the den-

sity variation in the buoyancy term of the momentum

equation for the vertical direction.

The governing equations for a steady, laminar, and

incompressible flow along a semi-infinite vertical wavy

surface with Boussinesq approximation may be written

as
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Moreover, the appropriate boundary conditions for the

problem are: At the wavy surface, u ¼ 0, v ¼ 0, T ¼ Tw,
c ¼ cw; Matching with the quiescent free stream, u ¼
UwðxÞ, v ¼ 0, P ¼ P1ðxÞ, T ¼ T1, c ¼ c1, UwðxÞ is the x
component of the inviscid velocity at the surface

y ¼ rðxÞ.
Using Prandtl’s transposition theorem to transform

the irregular wavy surface into a flat surface as extended

by Yao [17] and boundary-layer approximation, the

following dimensionless variables were introduced for

non-dimensionalizing the governing equations,

x� ¼ x
L
; y� ¼ y � r

L
Re1=2

u� ¼ u
U1

; v� ¼ v� r0u
U1

Re1=2; P � ¼ P
qU 2

1
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l
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l2

Pr ¼ lCp

K
; Sc ¼ l

qD

h ¼ T � T1
Tw � T1

; C ¼ c� c1
cw � c1

N ¼ bCðcw � c1Þ
bTðTw � T1Þ ; r ¼ r

L
; a ¼ a

L

ð7Þ
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It is noted that when N is equal to zero, there is no mass

diffusion body force and the problem reduces to pure

heat convection; when N becomes infinite, there is no

thermal diffusion.

The dimensionless governing equations become
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u�
ou�

ox�
þ v�

ou�

oy�
¼ � oP �

ox�
þ r0 oP

�

oy�
Re1=2 þ ð1þ r02Þ

� o2u�

oy�2
þ Gr
Re2

ðhþ NCÞ ð9Þ

u�2r00 þ r0ðhþ NCÞ Gr
Re2

¼ r0 oP
�

ox�
� ð1þ r02Þ oP

�

oy�
Re1=2

ð10Þ

u�
oh
ox�

þ v�
oh
oy�

¼ 1

Pr
ð1þ r02Þ o

2h
oy�2

ð11Þ

u�
oC
ox�

þ v�
oC
oy�

¼ 1

Sc
ð1þ r02Þ o

2C
oy�2

ð12Þ

It is worth noting that the r0 and r00 indicate the first and

second differentiations of r with respect to x�, therefore,
r0 ¼ dr

dx ¼ dr
dx� and r00 ¼ dr0

dx�. Eq. (9) shows that when

N < 0, the mass diffusion buoyancy forces oppose those

of thermal diffusion, and when N > 0, the mass diffusion

buoyancy forces aid those of thermal diffusion. The

Gr=Re2 term in Eq. (10) represents the Richard number.

The forced convection dominates at small values of

Richardson number Ri, while natural convection takes

over at large values of the same parameter. Eq. (10)

indicates that the pressure gradient along the y� axis is

OðRe�1=2Þ. This implies that the lowest-order pressure

gradient along x� axis can be determined from the in-

viscid flow solution and is given
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ox�
¼ � ð1

�
þ r02ÞU �

wU
�0
w þ r0r00U �2

w

�
ð13Þ

Eliminating oP �=oy� in Eqs. (9) and (10) resulting the

following equation:
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The solution has a singularity at the leading edge [19],

at x ¼ 0, dUw=dx is finite. In order to remove the sin-

gularity at the leading edge, use the following transfor-

mation:
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then Eqs. (8) and (11)–(14) could be further transformed

in the parabolic coordinates (X , Y ) in the following:
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The corresponding boundary conditions are

ð1Þ On the wavy surface ðY ¼ 0Þ: U ¼ V ¼ 0;

h ¼ 1; C ¼ 1 ð20Þ

ð2Þ Matching with the inviscid flow ðY ! 1Þ:
U ! 1; h ! 0; C ! 0 ð21Þ

There are U �0
w and U �

w terms appeared in Eqs. (16)–(19)

with the transformation. For small a, the inviscid flow

solution for U �
wðX Þ is

U �
wðX Þ ¼ 1þ a

1

p

Z 1

0

r0ðtÞ
X � t

dt
� �

þOða2Þ ð22Þ

After obtaining the velocity, temperature and concen-

tration fields along the wavy surface, the computations

of the local friction coefficient, Nusselt number, and

Sherwood number are of practical interest. The local

heat and mass transfer rates are large when the normal

velocity is approaching the surface; they are small when

the convective stream moves away from the surface. The

heat and mass transfer mechanism along a wavy surface

is different from that along a flat surface, and is modified

by the fluid motion normal to the surface. Therefore, the

local Nusselt number and Sherwood number are defined

respectively as
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hx
k
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where o=on represents differentiation along the normal

to the surface.

The shearing stress on the wavy surface is

sw ¼ l
ou
oy

��
þ ov
ox

��
Y¼0

ð25Þ

Since the local skin-friction coefficient Cfx is defined by

Cfx ¼
2sw
qU �2

w

ð26Þ

Substituting Eq. (25) into Eq. (26) in terms of the non-

dimensional quantities, we have

Cfx ¼
1

2Rex

� �1=2

2ð1� r02ÞU �3=2
w

oU
oY

� �
Y¼0
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3. Numerical approach

In this work, a marching finite-difference scheme was

used to solve the coupled governing equations for U , V , h
and C. In the transverse direction (Y ), 251 non-uniform

grid points were employed. Some of the calculations were

tested using 501 grid points in the Y direction, but no

significant improvement over the 251 grid points was

found. Additionally, there are 401 grid points in the

marching direction. In the program test, a finer axial step

size was tried and found to give acceptable accuracy. In

writing the finite-difference equations, a fully implicit

numerical scheme in which the axial convection is ap-

proximated by the upstream difference and the transverse

convection and diffusion terms by the central difference is

used to transform the governing equations into the finite-

difference equations. Each of the finite-difference equa-

tions forms a tridiagonal matrix equation, which can be

efficiently solved by the Thomas algorithm [29]. To fur-

ther check the adequacy of the numerical scheme used in

this work, the results for the mixed convection heat

transfer without concentration buoyancy in a wavy sur-

face were first obtained. Excellent agreement between the

present predictions and those of Moulic and Yao [19]

was found. Through these program tests, it was found

that the present numerical method is suitable for this

study.
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Fig. 2. The velocity contours. (a) a ¼ 0:05, N ¼ 2, Sc ¼ 1:3,

Gr=Re2 ¼ 2; (b) a ¼ 0:1, N ¼ 2, Sc ¼ 1:3, Gr=Re2 ¼ 2; (c)

a ¼ 0:05, N ¼ 2, Sc ¼ 1:3; Gr=Re2 ¼ 10; (d) a ¼ 0:05, N ¼ 4,

Sc ¼ 1:3, Gr=Re2 ¼ 2.
4. Results and discussion

In the present study, numerical calculations are per-

formed for the wavy surface described by y ¼ rðxÞ ¼
a � sin2ðpx=LÞ or dimensionless rðX Þ ¼ a sinðpX Þ for

amplitude–wavelength ratio of 0–0.1. In this work, the

air mixture with various mass species is considered.

Additionally, only the results of Richardson number

Gr=Re2 ranging from 0 to 10 are presented. From Fig. 1,

it is observed that the crest of the wavy surface are at
X ¼ 0:5, 1.5, 2.5, etc. and while X ¼ 1, 2, 3 and so on are

the troughs. The velocity distribution along X -axis of

this study is presented in Fig. 2. The temperature and

concentration distributions are also obtained and shown

in Figs. 3 and 4 respectively as well. In these figures,

there are four different cases for numerical calculation,

where (a) represents the typical case, and the values of a,
N , and Ri ¼ Gr=Re2 are 0.05, 2, and 2 respectively; (b)

represents the case of a ¼ 0:1, N ¼ 2, and Gr=Re2 ¼ 2;

(c) represents the case of a ¼ 0:05, N ¼ 2, and Gr=Re2 ¼
10; and (d) represents the case of a ¼ 0:05, N ¼ 4, and

Gr=Re2 ¼ 2. For all cases, the Prantdl number and

Schmidt number are held fixed at 0.7 and 1.3, respec-

tively, throughout the calculation. The results near the

leading edge of the wavy surface are not presented in

these figures, because this particular position is a sin-

gular point. In Figs. 2–4, it is found that the develop-

ments of axial velocity, temperature and concentration

profiles show periodical variations along the X -axis. In
all cases, the amplitude of the oscillating axial velocity,

temperature, and concentration decrease gradually

downstream. And the axial velocity increases, while the

temperature and concentration decreases along the

X -axis.
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Fig. 3. The temperature contours. (a) a ¼ 0:05, N ¼ 2,

Sc ¼ 1:3, Gr=Re2 ¼ 2; (b) a ¼ 0:1, N ¼ 2, Sc ¼ 1:3, Gr=Re2 ¼ 2;

(c) a ¼ 0:05, N ¼ 2, Sc ¼ 1:3; Gr=Re2 ¼ 10; (d) a ¼ 0:05, N ¼ 4,

Sc ¼ 1:3, Gr=Re2 ¼ 2.
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Fig. 4. The concentration contours. (a) a ¼ 0:05, N ¼ 2,

Sc ¼ 1:3, Gr=Re2 ¼ 2; (b) a ¼ 0:1, N ¼ 2, Sc ¼ 1:3, Gr=Re2 ¼ 2;

(c) a ¼ 0:05, N ¼ 2, Sc ¼ 1:3; Gr=Re2 ¼ 10; (d) a ¼ 0:05, N ¼ 4,

Sc ¼ 1:3, Gr=Re2 ¼ 2.
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In Fig. 2, the hydrodynamic boundary layer and the

maximum velocity value are about the same and there

occurs a periodical phenomenon for these four cases. It

is obvious that the maximum velocity is greater than

unity. This is due to the fact the forced flow and the

buoyancy forces are in the same direction. First, com-

paring case (a) with case (b) in Fig. 2, the difference

between these two cases is the increase of the amplitude–

wavelength ratio a. It is found that there is a greater

velocity fluctuation for higher amplitude–wavelength

ratios. Then comparing case (a) with case (c) in Fig. 2,

the only difference for these two cases is the increase in

the Ri number. Forced convection exists as a limit when

Ri number goes to zero and the free convection limit can

be reached when Ri number is large. It is seen that when

the Ri number increase, i.e., the convection flow is closer

to free convection, the velocity distribution becomes less

fluctuated. This is owing to the cumulative free con-

vection effect. Finally, when the buoyancy ratio N is

raised, by comparing cases (a) and (d) in Fig. 2, the

maximum velocity range becomes large. Obviously, the

contribution of mass diffusion to the buoyancy force

increases the maximum velocity significantly.
In Figs. 3 and 4, the developments of temperature

and concentration profiles are similar. This is due to the

fact that the temperature and concentration governing

equations are similar and the only difference between

them is the Prantdl number Pr of the energy equation

from the Schmidt number Sc of the species equation.

Comparison of Figs. 3 and 4 indicates that the thermal

boundary layers are thicker than those of concentration

for these four cases. This is because that the Schmidt

number Sc (¼ 1.3) is greater than Prandtl number Pr
(¼ 0.7). With the comparison of cases (a) and (b) for

both Figs. 3 and 4, the same result is derived with that

for Fig. 2 that a higher amplitude–wavelength ratio a
causes a larger fluctuation of the properties. Compari-

son of case (a) and case (c) reveals that both the thermal

and concentration boundary layers are thicker. In these

two cases, only the Ri number differs. The decrease of

both thermal and concentration boundary layer thick-

ness is caused by increasing the Ri number, which means

that when the convection flow is more likely to be a free

convection flow, both the thermal and concentration

boundary layers become thinner. By comparing case (a)

with case (d) in Figs. 3 and 4, both thermal and con-

centration boundary layer also are thicker. In these two
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cases, the only difference is the increase of buoyancy

ratio N . Therefore, the decrease of both thermal and

concentration boundary layer thickness is due to the

increasing buoyancy ratio.

In order to study the geometric effect on the fluid

flow and heat and mass transfer, Fig. 5 shows the

geometric effect on the distributions of the local skin-

friction coefficient, local Nusselt number, and local

Sherwood number. There is a trend observed that when

the amplitude–wavelength ratio a increases for a fixed

location of X -axis, the skin-friction coefficient, local

Nusselt number and local Sherwood number decreases.

Therefore, the heat and mass transfer rates decrease as

the amplitude–wavelength ratio a increases. As go far-

ther down the stream, the local skin-friction coefficient,

local Nusselt number, and local Sherwood number in-

crease. But there are some disturbances at higher
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amplitude–wavelength ratio a. It, therefore, may be

concluded that the disturbance is caused by the geo-

metric irregularity.

Fig. 6 gives the effects of buoyancy ratio N on the

distributions of the local skin-friction coefficient, local

Nusselt number and local Sherwood number respec-

tively along the X -axis. It is obvious that when the

buoyancy ratio N increases, the local skin-friction co-

efficient, local Nusselt number, and local Sherwood

number increase at a given X position. It means that the

buoyancy ratio enhances the heat and mass transfer of

the wavy surface. This can be made plausible by noting

the fact the thermal and concentration boundary layers

become thinner with increasing the buoyancy ratio, and

the wavy surface is kept on constant temperature and

concentration, the gradients of temperature and con-

centration become larger. Because the heat and mass
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transfer rates are proportional to the gradients of tem-

perature and concentration, the heat and mass transfer

rates are increased with the increasing buoyancy ratio N .

The local skin-friction coefficient, local Nusselt number,

and local Sherwood number also show fluctuation for a

fixed value of N in Fig. 6. The fluctuation becomes more

clearly in the downstream. This is because of the cu-

mulative free convection effect.

Fig. 7 illustrates the influence of Richardson number

Ri on the distributions of the local skin-friction coeffi-

cient, local Nusselt number, and local Sherwood number

in the axial coordinate. It is seen that the skin-friction

coefficient, local Nusselt number and local Sherwood

number increase as Ri is raised. That is, the heat and

mass transfer rate increases with increasing Richardson

number Ri. When Ri increases, the buoyancy effect in-
creases in the flow. The increasing of buoyancy effect

assists the heat and mass transfer. When Ri increases, the
minimum values move from the troughs to the crests.

The moving of the minimum values is the influence of

natural convection. Jang et al. [28] discovered that the

heat and mass transfer rate has a wavelength equal to

half of the wavelength of the wavy surface. When Ri
increases, the flow approaches natural convection and

the minimum values approach to the crest, which is

consistent with the results of Jang et al. [28]. This result

is also consistent with Moulic and Yao [19] that the

mixed convection contains two harmonics, forced con-

vection dominates the first harmonic is proportional to

the amplitude of the wavy surface, while the natural

convection is a second harmonic with a frequency twice

of the wavy surface.
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5. Conclusions

The problem of mixed convection heat and mass

transfer along a wavy surface has been analyzed. The

effects of amplitude–wavelength ratio a, buoyancy ratio

N , and mixed convection parameter Gr=Re2 on mo-

mentum and heat and mass transfer have been studied in

detail. Brief summaries of the major results are listed in

the following:

1. The properties of the flow field for the wavy surface

show a periodical variation, and the amplitude of

variation decrease gradually downstream.

2. The higher amplitude–wavelength ratio increases the

fluctuation of velocity, temperature and concentra-

tion fields. However, the local skin-friction, Nusselt

number and Sherwood number are smaller for larger
amplitude–wavelength ratios. The local skin-friction,

Nusselt number and Sherwood number also increase

as they go downstream.

3. The local skin-friction coefficient, Nusselt number

and Sherwood number increase with an increase in

the buoyancy ratio. This implies that the heat and

mass transfer rates increase with the buoyancy ratio.

4. Increasing Richardson number increases the local

skin-friction coefficient, Nusselt number and Sher-

wood number. That is, natural convection dominates

over forced convection in a mixed convection flow,

both heat and mass transfer rate is enhanced.

5. Mixed convection contains two harmonics, forced

convection dominates the first harmonic is propor-

tional to the amplitude of the wavy surface or near

the leading edge, while free convection dominates

the second harmonic or fluids move down stream.
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